如图4-1所示,“阶梯型”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形。如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?
答案与解析:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.
所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个)
如图4-1所示,“阶梯型”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形。如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?
答案与解析:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.
所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个)